CCA175 Reliable Test Cram Pdf & CCA175 Official Study Guide - Cloudera CCA175 Real Question On The Exam - Omgzlook

If you purchasing our CCA175 Reliable Test Cram Pdf simulating questions, you will get a comfortable package services afforded by our considerate after-sales services. We respect your needs toward the useful CCA175 Reliable Test Cram Pdfpractice materials by recommending our CCA175 Reliable Test Cram Pdf guide preparations for you. And we give you kind and professional supports by 24/7, as long as you can have problems on our CCA175 Reliable Test Cram Pdf study guide, then you can contact with us. The CCA175 Reliable Test Cram Pdf exam prep from our company will offer the help for you to develop your good study habits. If you buy and use our study materials, you will cultivate a good habit in study. During the process of using our CCA175 Reliable Test Cram Pdf study torrent, we can promise you will have the right to enjoy the twenty four hours online service provided by our online workers.

Cloudera Certified CCA175 You live so tired now.

Cloudera Certified CCA175 Reliable Test Cram Pdf - CCA Spark and Hadoop Developer Exam We emphasize on customers satisfaction, which benefits both exam candidates and our company equally. Then you can go to everywhere without carrying your computers. For it also supports the offline practice.

As CCA175 Reliable Test Cram Pdf exam questions with high prestige and esteem in the market, we hold sturdy faith for you. And you will find that our CCA175 Reliable Test Cram Pdf learning quiz is quite popular among the candidates all over the world. We are sure you can seep great deal of knowledge from our CCA175 Reliable Test Cram Pdf study prep in preference to other materials obviously.

Cloudera CCA175 Reliable Test Cram Pdf - So your error can be corrected quickly.

The optimization of CCA175 Reliable Test Cram Pdf training questions is very much in need of your opinion. If you find any problems during use, you can give us feedback. We will give you some benefits as a thank you. You will get a chance to update the system of CCA175 Reliable Test Cram Pdf real exam for free. Of course, we really hope that you can make some good suggestions after using our CCA175 Reliable Test Cram Pdf study materials. We hope to grow with you and help you get more success in your life.

Many students often complain that they cannot purchase counseling materials suitable for themselves. A lot of that stuff was thrown away as soon as it came back.

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 46 : You have been given belwo list in scala (name,sex,cost) for each work done.
List( ("Deeapak" , "male", 4000), ("Deepak" , "male", 2000), ("Deepika" , "female",
2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000) , ("Neeta" , "female", 2000))
Now write a Spark program to load this list as an RDD and do the sum of cost for combination of name and sex (as key)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create an RDD out of this list
val rdd = sc.parallelize(List( ("Deeapak" , "male", 4000}, ("Deepak" , "male", 2000),
("Deepika" , "female", 2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000} ,
("Neeta" , "female", 2000}}}
Step 2 : Convert this RDD in pair RDD
val byKey = rdd.map({case (name,sex,cost) => (name,sex)->cost})
Step 3 : Now group by Key
val byKeyGrouped = byKey.groupByKey
Step 4 : Nowsum the cost for each group
val result = byKeyGrouped.map{case ((id1,id2),values) => (id1,id2,values.sum)}
Step 5 : Save the results result.repartition(1).saveAsTextFile("spark12/result.txt")

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

SAP C-THR89-2405 - Our passing rate may be the most attractive factor for you. And our pass rate of the Microsoft MB-240 training engine is high as 98% to 100%, it is the data that proved and tested by our loyal customers. Microsoft PL-500 - If you are not working hard, you will lose a lot of opportunities! The passing rate is the best test for quality of our VMware 5V0-92.22 study materials. DAMA CDMP-RMD exam prep sincerely hopes that you can achieve your goals and realize your dreams.

Updated: May 28, 2022