CCA175 Material - Cloudera New CCA Spark And Hadoop Developer Exam Associate Level Test - Omgzlook

It is very normal to be afraid of the exam , especially such difficult exam like CCA175 Material exam. We know that encouragement alone cannot really improve your confidence in exam, so we provide the most practical and effective test software to help you pass the CCA175 Material exam. You can use our samples first to experience the effect of our software, and we believe that you can realize our profession and efforts by researching and developing CCA175 Material exam software from samples of CCA175 Material. CCA175 Material exam questions are tested by many users and you can rest assured. If you want to spend the least time to achieve your goals, CCA175 Material learning materials are definitely your best choice. As a IT worker sometime you may know you will take advantage of new technology more quickly by farming out computer operations, we prefer to strengthen own strong points.

Now, quickly download CCA175 Material free demo for try.

Presiding over the line of our practice materials over ten years, our experts are proficient as elites who made our CCA175 - CCA Spark and Hadoop Developer Exam Material learning questions, and it is their job to officiate the routines of offering help for you. Reliable CCA175 Test Answers test engine can simulate the actual test during the preparation and record the wrong questions for our reviewing. You just need 20-30 hours for preparation and feel confident to face the Reliable CCA175 Test Answers actual test.

And so many of our loyal customers have achieved their dreams with the help of our CCA175 Material exam questions. Your aspiring wishes such as promotion chance, or higher salaries or acceptance from classmates or managers and so on. And if you want to get all benefits like that, our CCA175 Material training quiz is your rudimentary steps to begin.

Cloudera CCA175 Material - Try it now!

In order to help you control the CCA175 Material examination time, we have considerately designed a special timer to help your adjust the pace of answering the questions of the CCA175 Material study materials. Many people always are stopped by the difficult questions. Then they will fall into thoughts to try their best to answer the questions of the CCA175 Material real exam. But they forgot to answer the other questions, our CCA175 Material training guide can help you solve this problem and get used to the pace.

If you want to get a comprehensive idea about our real CCA175 Material study materials. It is convenient for you to download the free demo, all you need to do is just to find the “Download for free” item, and you will find there are three kinds of versions of CCA175 Material learning guide for you to choose from namely, PDF Version Demo, PC Test Engine and Online Test Engine, you can choose to download any one version of our CCA175 Material exam questions as you like.

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 81 : You have been given MySQL DB with following details. You have been given following product.csv file product.csv productID,productCode,name,quantity,price
1001,PEN,Pen Red,5000,1.23
1002,PEN,Pen Blue,8000,1.25
1003,PEN,Pen Black,2000,1.25
1004,PEC,Pencil 2B,10000,0.48
1005,PEC,Pencil 2H,8000,0.49
1006,PEC,Pencil HB,0,9999.99
Now accomplish following activities.
1 . Create a Hive ORC table using SparkSql
2 . Load this data in Hive table.

QUESTION NO: 2
. Create a Hive parquet table using SparkSQL and load data in it.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create this tile in HDFS under following directory (Without header}
/user/cloudera/he/exam/task1/productcsv
Step 2 : Now using Spark-shell read the file as RDD
// load the data into a new RDD
val products = sc.textFile("/user/cloudera/he/exam/task1/product.csv")
// Return the first element in this RDD
prod u cts.fi rst()
Step 3 : Now define the schema using a case class
case class Product(productid: Integer, code: String, name: String, quantity:lnteger, price:
Float)
Step 4 : create an RDD of Product objects
val prdRDD = products.map(_.split(",")).map(p =>
Product(p(0).tolnt,p(1),p(2),p(3}.tolnt,p(4}.toFloat))
prdRDD.first()
prdRDD.count()
Step 5 : Now create data frame val prdDF = prdRDD.toDF()
Step 6 : Now store data in hive warehouse directory. (However, table will not be created } import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("orc").saveAsTable("product_orc_table") step 7:
Now create table using data stored in warehouse directory. With the help of hive.
hive
show tables
CREATE EXTERNAL TABLE products (productid int,code string,name string .quantity int, price float}
STORED AS ore
LOCATION 7user/hive/warehouse/product_orc_table';
Step 8 : Now create a parquet table
import org.apache.spark.sql.SaveMode
prdDF.write.mode(SaveMode.Overwrite).format("parquet").saveAsTable("product_parquet_ table")
Step 9 : Now create table using this
CREATE EXTERNAL TABLE products_parquet (productid int,code string,name string
.quantity int, price float}
STORED AS parquet
LOCATION 7user/hive/warehouse/product_parquet_table';
Step 10 : Check data has been loaded or not.
Select * from products;
Select * from products_parquet;
3. CORRECT TEXT
Problem Scenario 84 : In Continuation of previous question, please accomplish following activities.
1. Select all the products which has product code as null
2. Select all the products, whose name starts with Pen and results should be order by Price descending order.
3. Select all the products, whose name starts with Pen and results should be order by
Price descending order and quantity ascending order.

QUESTION NO: 3
Select top 2 products by price
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Select all the products which has product code as null
val results = sqlContext.sql(......SELECT' FROM products WHERE code IS NULL......) results. showQ val results = sqlContext.sql(......SELECT * FROM products WHERE code = NULL ",,M ) results.showQ
Step 2 : Select all the products , whose name starts with Pen and results should be order by Price descending order. val results = sqlContext.sql(......SELECT * FROM products
WHERE name LIKE 'Pen %' ORDER BY price DESC......)
results. showQ
Step 3 : Select all the products , whose name starts with Pen and results should be order by Price descending order and quantity ascending order. val results = sqlContext.sql('.....SELECT * FROM products WHERE name LIKE 'Pen %' ORDER BY price DESC, quantity......) results. showQ
Step 4 : Select top 2 products by price
val results = sqlContext.sql(......SELECT' FROM products ORDER BY price desc
LIMIT2......}
results. show()
4. CORRECT TEXT
Problem Scenario 4: You have been given MySQL DB with following details.
user=retail_dba
password=cloudera
database=retail_db
table=retail_db.categories
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following activities.
Import Single table categories (Subset data} to hive managed table , where category_id between 1 and 22
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Import Single table (Subset data)
sqoop import --connect jdbc:mysql://quickstart:3306/retail_db -username=retail_dba - password=cloudera -table=categories -where "\'category_id\' between 1 and 22" --hive- import --m 1
Note: Here the ' is the same you find on ~ key
This command will create a managed table and content will be created in the following directory.
/user/hive/warehouse/categories
Step 2 : Check whether table is created or not (In Hive)
show tables;
select * from categories;

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 49 : You have been given below code snippet (do a sum of values by key}, with intermediate output.
val keysWithValuesList = Array("foo=A", "foo=A", "foo=A", "foo=A", "foo=B", "bar=C",
"bar=D", "bar=D")
val data = sc.parallelize(keysWithValuesl_ist}
//Create key value pairs
val kv = data.map(_.split("=")).map(v => (v(0), v(l))).cache()
val initialCount = 0;
val countByKey = kv.aggregateByKey(initialCount)(addToCounts, sumPartitionCounts)
Now define two functions (addToCounts, sumPartitionCounts) such, which will produce following results.
Output 1
countByKey.collect
res3: Array[(String, Int)] = Array((foo,5), (bar,3))
import scala.collection._
val initialSet = scala.collection.mutable.HashSet.empty[String]
val uniqueByKey = kv.aggregateByKey(initialSet)(addToSet, mergePartitionSets)
Now define two functions (addToSet, mergePartitionSets) such, which will produce following results.
Output 2:
uniqueByKey.collect
res4: Array[(String, scala.collection.mutable.HashSet[String])] = Array((foo,Set(B, A}},
(bar,Set(C, D}}}
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
val addToCounts = (n: Int, v: String) => n + 1
val sumPartitionCounts = (p1: Int, p2: Int} => p1 + p2
val addToSet = (s: mutable.HashSet[String], v: String) => s += v
val mergePartitionSets = (p1: mutable.HashSet[String], p2: mutable.HashSet[String]) => p1
+ += p2

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 13 : You have been given following mysql database details as well as other info.
user=retail_dba
password=cloudera
database=retail_db
jdbc URL = jdbc:mysql://quickstart:3306/retail_db
Please accomplish following.
1. Create a table in retailedb with following definition.
CREATE table departments_export (department_id int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOWQ);
2. Now import the data from following directory into departments_export table,
/user/cloudera/departments new
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Login to musql db
mysql --user=retail_dba -password=cloudera
show databases; use retail_db; show tables;
step 2 : Create a table as given in problem statement.
CREATE table departments_export (departmentjd int(11), department_name varchar(45), created_date T1MESTAMP DEFAULT NOW()); show tables;
Step 3 : Export data from /user/cloudera/departmentsnew to new table departments_export sqoop export -connect jdbc:mysql://quickstart:3306/retail_db \
-username retaildba \
--password cloudera \
--table departments_export \
-export-dir /user/cloudera/departments_new \
-batch
Step 4 : Now check the export is correctly done or not. mysql -user*retail_dba - password=cloudera show databases; use retail _db;
show tables;
select' from departments_export;

They will accurately and quickly provide you with Cloudera certification EMC D-PWF-DS-23 exam materials and timely update Cloudera EMC D-PWF-DS-23 exam certification exam practice questions and answers and binding. EMC D-PST-OE-23 - We would like to extend our sincere appreciation for you to browse our website, and we will never let you down. IBM C1000-176 - Our Omgzlook provide the most comprehensive information and update fastest. Great concentrative progress has been made by our company, who aims at further cooperation with our candidates in the way of using our IBM C1000-127 exam engine as their study tool. SASInstitute A00-470 - Omgzlook have different training methods and training courses for different candidates.

Updated: May 28, 2022