CCA175 Braindumps - New Study Questions CCA175 Sheet & CCA Spark And Hadoop Developer Exam - Omgzlook

Omgzlook website is fully equipped with resources and the questions of Cloudera CCA175 Braindumps exam, it also includes the Cloudera CCA175 Braindumps exam practice test. Which can help candidates prepare for the exam and pass the exam. You can download the part of the trial exam questions and answers as a try. If you fail the exam, we will give a full refund to you. We all know that in the fiercely competitive IT industry, having some IT authentication certificates is very necessary. The exam materiala of the Omgzlook Cloudera CCA175 Braindumps is specifically designed for candicates.

Cloudera Certified CCA175 Come on, you will be the next best IT experts.

Cloudera Certified CCA175 Braindumps - CCA Spark and Hadoop Developer Exam It is also the dream of ambitious IT professionals. Omgzlook dumps has high hit rate that will help you to pass Cloudera Valid CCA175 Test Book test at the first attempt, which is a proven fact. So, the quality of Omgzlook practice test is 100% guarantee and Omgzlook dumps torrent is the most trusted exam materials.

Omgzlook's Cloudera CCA175 Braindumps exam training materials are bring the greatest success rate to all the candicates who want to pass the exam. Cloudera CCA175 Braindumps exam is a challenging Certification Exam. Besides the books, internet is considered to be a treasure house of knowledge.

Cloudera CCA175 Braindumps - We can make you have a financial windfall.

Are you worrying about how to pass Cloudera CCA175 Braindumps test? Now don't need to worry about the problem. Omgzlook that committed to the study of Cloudera CCA175 Braindumps certification exam for years has a wealth of experience and strong exam dumps to help you effectively pass your exam. Whether to pass the exam successfully, it consists not in how many materials you have seen, but in if you find the right method. Omgzlook is the right method which can help you sail through Cloudera CCA175 Braindumps certification exam.

We can guarantee that you can pass the Cloudera CCA175 Braindumps exam the first time. If you buy the goods of Omgzlook, then you always be able to get newer and more accurate test information.

CCA175 PDF DEMO:

QUESTION NO: 1
CORRECT TEXT
Problem Scenario 46 : You have been given belwo list in scala (name,sex,cost) for each work done.
List( ("Deeapak" , "male", 4000), ("Deepak" , "male", 2000), ("Deepika" , "female",
2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000) , ("Neeta" , "female", 2000))
Now write a Spark program to load this list as an RDD and do the sum of cost for combination of name and sex (as key)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1 : Create an RDD out of this list
val rdd = sc.parallelize(List( ("Deeapak" , "male", 4000}, ("Deepak" , "male", 2000),
("Deepika" , "female", 2000),("Deepak" , "female", 2000), ("Deepak" , "male", 1000} ,
("Neeta" , "female", 2000}}}
Step 2 : Convert this RDD in pair RDD
val byKey = rdd.map({case (name,sex,cost) => (name,sex)->cost})
Step 3 : Now group by Key
val byKeyGrouped = byKey.groupByKey
Step 4 : Nowsum the cost for each group
val result = byKeyGrouped.map{case ((id1,id2),values) => (id1,id2,values.sum)}
Step 5 : Save the results result.repartition(1).saveAsTextFile("spark12/result.txt")

QUESTION NO: 2
CORRECT TEXT
Problem Scenario 40 : You have been given sample data as below in a file called spark15/file1.txt
3070811,1963,1096,,"US","CA",,1,
3022811,1963,1096,,"US","CA",,1,56
3033811,1963,1096,,"US","CA",,1,23
Below is the code snippet to process this tile.
val field= sc.textFile("spark15/f ilel.txt")
val mapper = field.map(x=> A)
mapper.map(x => x.map(x=> {B})).collect
Please fill in A and B so it can generate below final output
Array(Array(3070811,1963,109G, 0, "US", "CA", 0,1, 0)
,Array(3022811,1963,1096, 0, "US", "CA", 0,1, 56)
,Array(3033811,1963,1096, 0, "US", "CA", 0,1, 23)
)
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
A. x.split(","-1)
B. if (x. isEmpty) 0 else x

QUESTION NO: 3
CORRECT TEXT
Problem Scenario 89 : You have been given below patient data in csv format, patientID,name,dateOfBirth,lastVisitDate
1001,Ah Teck,1991-12-31,2012-01-20
1002,Kumar,2011-10-29,2012-09-20
1003,Ali,2011-01-30,2012-10-21
Accomplish following activities.
1 . Find all the patients whose lastVisitDate between current time and '2012-09-15'
2 . Find all the patients who born in 2011
3 . Find all the patients age
4 . List patients whose last visited more than 60 days ago
5 . Select patients 18 years old or younger
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution :
Step 1:
hdfs dfs -mkdir sparksql3
hdfs dfs -put patients.csv sparksql3/
Step 2 : Now in spark shell
// SQLContext entry point for working with structured data
val sqlContext = neworg.apache.spark.sql.SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.impIicits._
// Import Spark SQL data types and Row.
import org.apache.spark.sql._
// load the data into a new RDD
val patients = sc.textFilef'sparksqIS/patients.csv")
// Return the first element in this RDD
patients.first()
//define the schema using a case class
case class Patient(patientid: Integer, name: String, dateOfBirth:String , lastVisitDate:
String)
// create an RDD of Product objects
val patRDD = patients.map(_.split(M,M)).map(p => Patient(p(0).tolnt,p(1),p(2),p(3))) patRDD.first() patRDD.count(}
// change RDD of Product objects to a DataFrame val patDF = patRDD.toDF()
// register the DataFrame as a temp table patDF.registerTempTable("patients"}
// Select data from table
val results = sqlContext.sql(......SELECT* FROM patients '.....)
// display dataframe in a tabular format
results.show()
//Find all the patients whose lastVisitDate between current time and '2012-09-15' val results = sqlContext.sql(......SELECT * FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(lastVisitDate, 'yyyy-MM-dd') AS TIMESTAMP))
BETWEEN '2012-09-15' AND current_timestamp() ORDER BY lastVisitDate......) results.showQ
/.Find all the patients who born in 2011
val results = sqlContext.sql(......SELECT * FROM patients WHERE
YEAR(TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS
TIMESTAMP))) = 2011 ......)
results. show()
//Find all the patients age
val results = sqlContext.sql(......SELECT name, dateOfBirth, datediff(current_date(),
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM-dd') AS TlMESTAMP}}}/365
AS age
FROM patients
Mini >
results.show()
//List patients whose last visited more than 60 days ago
-- List patients whose last visited more than 60 days ago
val results = sqlContext.sql(......SELECT name, lastVisitDate FROM patients WHERE datediff(current_date(), TO_DATE(CAST(UNIX_TIMESTAMP[lastVisitDate, 'yyyy-MM-dd')
AS T1MESTAMP))) > 60......);
results. showQ;
-- Select patients 18 years old or younger
SELECT' FROM patients WHERE TO_DATE(CAST(UNIXJTlMESTAMP(dateOfBirth,
'yyyy-MM-dd') AS TIMESTAMP}) > DATE_SUB(current_date(),INTERVAL 18 YEAR); val results = sqlContext.sql(......SELECT' FROM patients WHERE
TO_DATE(CAST(UNIX_TIMESTAMP(dateOfBirth, 'yyyy-MM--dd') AS TIMESTAMP)) >
DATE_SUB(current_date(), T8*365)......);
results. showQ;
val results = sqlContext.sql(......SELECT DATE_SUB(current_date(), 18*365) FROM patients......); results.show();

QUESTION NO: 4
CORRECT TEXT
Problem Scenario 35 : You have been given a file named spark7/EmployeeName.csv
(id,name).
EmployeeName.csv
E01,Lokesh
E02,Bhupesh
E03,Amit
E04,Ratan
E05,Dinesh
E06,Pavan
E07,Tejas
E08,Sheela
E09,Kumar
E10,Venkat
1. Load this file from hdfs and sort it by name and save it back as (id,name) in results directory.
However, make sure while saving it should be able to write In a single file.
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution:
Step 1 : Create file in hdfs (We will do using Hue). However, you can first create in local filesystem and then upload it to hdfs.
Step 2 : Load EmployeeName.csv file from hdfs and create PairRDDs
val name = sc.textFile("spark7/EmployeeName.csv")
val namePairRDD = name.map(x=> (x.split(",")(0),x.split(",")(1)))
Step 3 : Now swap namePairRDD RDD.
val swapped = namePairRDD.map(item => item.swap)
step 4: Now sort the rdd by key.
val sortedOutput = swapped.sortByKey()
Step 5 : Now swap the result back
val swappedBack = sortedOutput.map(item => item.swap}
Step 6 : Save the output as a Text file and output must be written in a single file.
swappedBack. repartition(1).saveAsTextFile("spark7/result.txt")

QUESTION NO: 5
CORRECT TEXT
Problem Scenario 96 : Your spark application required extra Java options as below. -
XX:+PrintGCDetails-XX:+PrintGCTimeStamps
Please replace the XXX values correctly
./bin/spark-submit --name "My app" --master local[4] --conf spark.eventLog.enabled=talse -
-conf XXX hadoopexam.jar
Answer:
See the explanation for Step by Step Solution and configuration.
Explanation:
Solution
XXX: Mspark.executoi\extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps"
Notes: ./bin/spark-submit \
--class <maln-class>
--master <master-url> \
--deploy-mode <deploy-mode> \
-conf <key>=<value> \
# other options
< application-jar> \
[application-arguments]
Here, conf is used to pass the Spark related contigs which are required for the application to run like any specific property(executor memory) or if you want to override the default property which is set in Spark-default.conf.

What's more, what make you be rest assured most is that we develop the exam software which will help more candidates get IBM C1000-182 exam certification. Cisco 200-301 - How do you want to prove your ability? More and more people prove themselves by taking IT certification exam. Juniper JN0-223 - The empty promise is not enough. If you feel it is difficult to prepare for Cloudera HashiCorp Terraform-Associate-003 and need spend a lot of time on it, you had better use Omgzlook test dumps which will help you save lots of time. SAP C_S4TM_2023 PDF file is the common version which many candidates often choose.

Updated: May 28, 2022