AWS-DevOps-Engineer-Professional 復習教材、 Amazon AWS-DevOps-Engineer-Professional トレーニング資料 - AWS Certified DevOps Engineer Professional (DOP C01) - Omgzlook

Omgzlook のAmazonのAWS-DevOps-Engineer-Professional復習教材問題集はシラバスに従って、それにAWS-DevOps-Engineer-Professional復習教材認定試験の実際に従って、あなたがもっとも短い時間で最高かつ最新の情報をもらえるように、弊社はトレーニング資料を常にアップグレードしています。弊社のAWS-DevOps-Engineer-Professional復習教材のトレーニング資料を買ったら、一年間の無料更新サービスを差し上げます。もっと長い時間をもらって試験を準備したいのなら、あなたがいつでもサブスクリプションの期間を伸びることができます。 もし訓練班とオンライン研修などのルートを通じないと試験に合格するのが比較的に難しい、一回に合格率非常に低いです。Omgzlookはもっとも頼られるトレーニングツールで、AmazonのAWS-DevOps-Engineer-Professional復習教材認定試験の実践テストソフトウェアを提供したり、AmazonのAWS-DevOps-Engineer-Professional復習教材認定試験の練習問題と解答もあって、最高で最新なAmazonのAWS-DevOps-Engineer-Professional復習教材認定試験「AWS Certified DevOps Engineer - Professional (DOP-C01)」問題集も一年間に更新いたします。 Omgzlookには専門的なエリート団体があります。

AWS Certified DevOps Engineer AWS-DevOps-Engineer-Professional 正しい方法は大切です。

OmgzlookはあなたがAmazonのAWS-DevOps-Engineer-Professional - AWS Certified DevOps Engineer - Professional (DOP-C01)復習教材認定試験に合格する確保です。 Omgzlookは多くの受験生を助けて彼らにAmazonのAWS-DevOps-Engineer-Professional 日本語認定対策試験に合格させることができるのは我々専門的なチームがAmazonのAWS-DevOps-Engineer-Professional 日本語認定対策試験を研究して解答を詳しく分析しますから。試験が更新されているうちに、我々はAmazonのAWS-DevOps-Engineer-Professional 日本語認定対策試験の資料を更新し続けています。

そうすると、受験するとき、あなたは試験を容易に対処することができます。OmgzlookのAWS-DevOps-Engineer-Professional復習教材問題集には、PDF版およびソフトウェア版のバージョンがあります。それはあなたに最大の利便性を与えることができます。

Amazon AWS-DevOps-Engineer-Professional復習教材 - まだ何を待っていますか。

Omgzlookのシニア専門家チームはAmazonのAWS-DevOps-Engineer-Professional復習教材試験に対してトレーニング教材を研究できました。Omgzlookが提供した教材を勉強ツルとしてAmazonのAWS-DevOps-Engineer-Professional復習教材認定試験に合格するのはとても簡単です。Omgzlookも君の100%合格率を保証いたします。

OmgzlookのAmazonのAWS-DevOps-Engineer-Professional復習教材試験トレーニング資料はAmazonのAWS-DevOps-Engineer-Professional復習教材認定試験を準備するのリーダーです。Omgzlookの AmazonのAWS-DevOps-Engineer-Professional復習教材試験トレーニング資料は高度に認証されたIT領域の専門家の経験と創造を含めているものです。

AWS-DevOps-Engineer-Professional PDF DEMO:

QUESTION NO: 1
A company is hosting a web application in an AWS Region. For disaster recovery purposes, a second region is being used as a standby. Disaster recovery requirements state that session data must be replicated between regions in near-real time and 1% of requests should route to the secondary region to continuously verify system functionality. Additionally, if there is a disruption in service in the main region, traffic should be automatically routed to the secondary region, and the secondary region must be able to scale up to handle all traffic.
How should a DevOps Engineer meet these requirements?
A. In both regions, deploy the application on AWS Elastic Beanstalk and use Amazon DynamoDB global tables for session data. Use an Amazon Route 53 weighted routing policy with health checks to distribute the traffic across the regions.
B. In both regions, launch the application in Auto Scaling groups and use DynamoDB for session data.
Use a Route 53 failover routing policy with health checks to distribute the traffic across the regions.
C. In both regions, deploy the application in AWS Lambda, exposed by Amazon API Gateway, and use
Amazon RDS PostgreSQL with cross-region replication for session data. Deploy the web application with client-side logic to call the API Gateway directly.
D. In both regions, launch the application in Auto Scaling groups and use DynamoDB global tables for session data. Enable an Amazon CloudFront weighted distribution across regions. Point the Amazon
Route 53 DNS record at the CloudFront distribution.
Answer: C

QUESTION NO: 2
A defect was discovered in production and a new sprint item has been created for deploying a hotfix.
However, any code change must go through the following steps before going into production:
*Scan the code for security breaches, such as password and access key leaks.
Run the code through extensive, long running unit tests.
Which source control strategy should a DevOps Engineer use in combination with AWS CodePipeline to complete this process?
A. Create a hotfix branch from the master branch. Triger the development pipeline from the hotfix branch.
Use AWS Lambda to do a content scan and run unit tests. Add a manual approval stage that merges the hotfix branch into the master branch.
B. Create a hotfix branch from the master branch. Create a separate source stage for the hotfix branch in the production pipeline. Trigger the pipeline from the hotfix branch. Use AWS Lambda to do a content scan and use AWS CodeBuild to run unit tests. Add a manual approval stage that merges the hotfix branch into the master branch.
C. Create a hotfix branch from the master branch. Triger the development pipeline from the hotfix branch.
Use AWS CodeBuild to do a content scan and run unit tests. Add a manual approval stage that merges the hotfix branch into the master branch.
D. Create a hotfix tag on the last commit of the master branch. Trigger the development pipeline from the hotfix tag. Use AWS CodeDeploy with Amazon ECS to do a content scan and run unit tests.
Add a manual approval stage that merges the hotfix tag into the master branch.
Answer: D

QUESTION NO: 3
A government agency has multiple AWS accounts, many of which store sensitive citizen information. A Security team wants to detect anomalous account and network activities (such as SSH brute force attacks) in any account and centralize that information in a dedicated security account.
Event information should be stored in an Amazon S3 bucket in the security account, which is monitored by the department's Security Information and Even Manager (SIEM) system.
How can this be accomplished?
A. Enable Amazon Macie in the security account only. Configure the security account as the Macie
Administrator for every member account using invitation/ acceptance. Create an Amazon
CloudWatch Events rule in the security account to send all findings to Amazon Kinesis Data Streams.
Write and application using KCL to read data from the Kinesis Data Streams and write to the S3 bucket.
B. Enable Amazon GuardDuty in every account. Configure the security account as the GuardDuty
Administrator for every member account using invitation/ acceptance. Create an Amazon
CloudWatch rule in the security account to send all findings to Amazon Kinesis Data Firehouse, which will push the findings to the S3 bucket.
C. Enable Amazon GuardDuty in the security account only. Configure the security account as the
GuardDuty Administrator for every member account using invitation/acceptance. Create an Amazon
CloudWatch rule in the security account to send all findings to Amazon Kinesis Data Streams. Write and application using KCL to read data from Kinesis Data Streams and write to the S3 bucket.
D. Enable Amazon Macie in every account. Configure the security account as the Macie
Administrator for every member account using invitation/acceptance. Create an Amazon CloudWatch
Events rule in the security account to send all findings to Amazon Kinesis Data Firehouse, which should push the findings to the S3 bucket.
Answer: C

QUESTION NO: 4
A DevOps Engineer administers an application that manages video files for a video production company. The application runs on Amazon EC2 instances behind an ELB Application Load Balancer.
The instances run in an Auto Scaling group across multiple Availability Zones. Data is stored in an
Amazon RDS PostgreSQL Multi-AZ DB instance, and the video files are stored in an Amazon S3 bucket.
On a typical day, 50 GB of new video are added to the S3 bucket. The Engineer must implement a multi-region disaster recovery plan with the least data loss and the lowest recovery times. The current application infrastructure is already described using AWS CloudFormation.
Which deployment option should the Engineer choose to meet the uptime and recovery objectives for the system?
A. Launch the application from the CloudFormation template in the second region, which sets the capacity of the Auto Scaling group to 1. Create a scheduled task to take daily Amazon RDS cross- region snapshots to the second region. In the second region, enable cross-region replication between the original S3 bucket and Amazon Glacier. In a disaster, launch a new application stack in the second region and restore the database from the most recent snapshot.
B. Use Amazon CloudWatch Events to schedule a nightly task to take a snapshot of the database and copy the snapshot to the second region. Create an AWS Lambda function that copies each object to a new S3 bucket in the second region in response to S3 event notifications. In the second region, launch the application from the CloudFormation template and restore the database from the most recent snapshot.
C. Launch the application from the CloudFormation template in the second region, which sets the capacity of the Auto Scaling group to 1. Create an Amazon RDS read replica in the second region. In the second region, enable cross-region replication between the original S3 bucket and a new S3 bucket. To fail over, promote the read replica as master. Update the CloudFormation stack and increase the capacity of the Auto Scaling group.
D. Launch the application from the CloudFormation template in the second region which sets the capacity of the Auto Scaling group to 1. Use Amazon CloudWatch Events to schedule a nightly task to take a snapshot of the database, copy the snapshot to the second region, and replace the DB instance in the second region from the snapshot. In the second region, enable cross-region replication between the original S3 bucket and a new S3 bucket. To fail over, increase the capacity of the Auto Scaling group.
Answer: D

QUESTION NO: 5
A DevOps Engineer is using AWS CodeDeploy across a fleet of Amazon EC2 instances in an
EC2 Auto Scaling group. The associated CodeDeploy deployment group, which is integrated with EC2
Auto Scaling, is configured to perform in-place deployments with CodeDeployDefault.OneAtATime.
During an ongoing new deployment, the Engineer discovers that, although the overall deployment finished successfully, two out of five instances have the previous application revision deployed. The other three instances have the newest application revision.
What is likely causing this issue?
A. A failed AfterInstall lifecycle event hook caused the CodeDeploy agent to roll back to the previous version on the affected instances.
B. EC2 Auto Scaling launched two new instances while the new deployment had not yet finished, causing the previous version to be deployed on the affected instances.
C. The CodeDeploy agent was not installed in two affected instances.
D. The two affected instances failed to fetch the new deployment.
Answer: B

AmazonのSalesforce Marketing-Cloud-Email-Specialistは専門知識と情報技術の検査として認証試験で、Omgzlookはあなたに一日早くAmazonの認証試験に合格させて、多くの人が大量の時間とエネルギーを費やしても無駄になりました。 無料デモはあなたに安心で購入して、購入した後1年間の無料AmazonのMicrosoft MB-240J試験の更新はあなたに安心で試験を準備することができます、あなたは確実に購入を休ませることができます私たちのソフトウェアを試してみてください。 Omgzlookが提供したAmazonのHP HPE0-V28試験問題と解答が真実の試験の練習問題と解答は最高の相似性があり、一年の無料オンラインの更新のサービスがあり、100%のパス率を保証して、もし試験に合格しないと、弊社は全額で返金いたします。 Salesforce Education-Cloud-Consultant - 我々の承諾だけでなく、お客様に最も全面的で最高のサービスを提供します。 Salesforce Data-Cloud-Consultant - Omgzlookを選択したら、成功をとりましょう。

Updated: May 28, 2022